
TFTP
Copyright © 1997-2022 Ericsson AB. All Rights Reserved.

TFTP 1.0.2
September 5, 2022

Copyright © 1997-2022 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 5, 2022

1.1 Introduction

1 TFTP User's Guide

The TFTP application provides a TFTP client and server.

1.1 Introduction
1.1.1 Purpose
The Trivial File Transfer Protocol or TFTP is a very simple protocol used to transfer files.

It has been implemented on top of the User Datagram protocol (UDP) so it may be used to move files between machines
on different networks implementing UDP. It is designed to be small and easy to implement. Therefore, it lacks most
of the features of a regular FTP. The only thing it can do is read and write files (or mail) from/to a remote server. It
cannot list directories, and currently has no provisions for user authentication.

The tftp application implements the following IETF standards:

• RFC 1350, The TFTP Protocol (revision 2)

• RFC 2347, TFTP Option Extension

• RFC 2348, TFTP Blocksize Option

• RFC 2349, TFTP Timeout Interval and Transfer Size Options

The only feature that not is implemented is the netascii transfer mode.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of the TFTP protocol.

1.2 Getting Started
1.2.1 General Information
The start/1 function starts a daemon process listening for UDP packets on a port. When it receives a request for read
or write, it spawns a temporary server process handling the transfer.

On the client side, function read_file/3 and write_file/3 spawn a temporary client process establishing contact with a
TFTP daemon and perform the file transfer.

tftp uses a callback module to handle the file transfer. Two such callback modules are provided, tftp_binary
and tftp_file. See read_file/3 and write_file/3 for details. You can also implement your own callback modules,
see CALLBACK FUNCTIONS. A callback module provided by the user is registered using option callback, see
DATA TYPES.

1.2.2 Using the TFTP client and server
This is a simple example of starting the TFTP server and reading the content of a sample file using the TFTP client.

Step 1. Create a sample file to be used for the transfer:

 $ echo "Erlang/OTP 21" > file.txt

Ericsson AB. All Rights Reserved.: TFTP | 1

1.2 Getting Started

Step 2. Start the TFTP server:

 1> {ok, Pid} = tftp:start([{port, 19999}]).
 {ok,<0.65.0>}

Step 3. Start the TFTP client (in another shell):

 1> tftp:read_file("file.txt", binary, [{port, 19999}]).
 {ok,<<"Erlang/OTP 21\n">>}

2 | Ericsson AB. All Rights Reserved.: TFTP

1.2 Getting Started

2 Reference Manual

The TFTP application.

Ericsson AB. All Rights Reserved.: TFTP | 3

tftp

tftp
Erlang module

Interface module for the tftp application.

DATA TYPES
ServiceConfig = Options

Options = [option()]

Most of the options are common for both the client and the server side, but some of them differs a little. The available
option()s are as follows:

{debug, Level}

Level = none | error | warning | brief | normal | verbose | all

Controls the level of debug printouts. Default is none.

{host, Host}

Host = hostname(), see inet(3).

The name or IP address of the host where the TFTP daemon resides. This option is only used by the client.

{port, Port}

Port = int()

The TFTP port where the daemon listens. Defaults is the standardized number 69. On the server side, it can
sometimes make sense to set it to 0, meaning that the daemon just picks a free port (which one is returned by
function info/1).

If a socket is connected already, option {udp, [{fd, integer()}]} can be used to pass the open file
descriptor to gen_udp. This can be automated by using a command-line argument stating the prebound file
descriptor number. For example, if the port is 69 and file descriptor 22 is opened by setuid_socket_wrap,
the command-line argument "-tftpd_69 22" triggers the prebound file descriptor 22 to be used instead of opening
port 69. The UDP option {udp, [{fd, 22}]} is automatically added. See init:get_argument/ about
command-line arguments and gen_udp:open/2 about UDP options.

{port_policy, Policy}

Policy = random | Port | {range, MinPort, MaxPort}

Port = MinPort = MaxPort = int()

Policy for the selection of the temporary port that is used by the server/client during the file transfer. Default is
random, which is the standardized policy. With this policy a randomized free port is used. A single port or a
range of ports can be useful if the protocol passes through a firewall.

{udp, Options}

Options = [Opt], see gen_udp:open/2.

{use_tsize, Bool}

Bool = bool()

Flag for automated use of option tsize. With this set to true, the write_file/3 client determines the
filesize and sends it to the server as the standardized tsize option. A read_file/3 client acquires only a
filesize from the server by sending a zero tsize.

4 | Ericsson AB. All Rights Reserved.: TFTP

tftp

{max_tsize, MaxTsize}

MaxTsize = int() | infinity

Threshold for the maximal filesize in bytes. The transfer is aborted if the limit is exceeded. Default is infinity.

{max_conn, MaxConn}

MaxConn = int() | infinity

Threshold for the maximal number of active connections. The daemon rejects the setup of new connections if
the limit is exceeded. Default is infinity.

{TftpKey, TftpVal}

TftpKey = string()
TftpVal = string()

Name and value of a TFTP option.

{reject, Feature}

Feature = Mode | TftpKey
 Mode = read | write
 TftpKey = string()

Controls which features to reject. This is mostly useful for the server as it can restrict the use of certain TFTP
options or read/write access.

{callback, {RegExp, Module, State}}

RegExp = string()
Module = atom()
State = term()

Registration of a callback module. When a file is to be transferred, its local filename is matched to the regular
expressions of the registered callbacks. The first matching callback is used during the transfer. See read_file/3
and write_file/3.

The callback module must implement the tftp behavior, see CALLBACK FUNCTIONS.

{logger, Module}

Module = module()

Callback module for customized logging of errors, warnings, and info messages. The callback module must
implement the tftp_logger behavior, see LOGGER FUNCTIONS. The default module is tftp_logger.

{max_retries, MaxRetries}

MaxRetries = int()

Threshold for the maximal number of retries. By default the server/client tries to resend a message up to five
times when the time-out expires.

Exports

change_config(daemons, Options) -> [{Pid, Result}]
Types:

Options = [option()]

Pid = pid()

Result = ok | {error, Reason}

Reason = term()

Ericsson AB. All Rights Reserved.: TFTP | 5

tftp

Changes configuration for all TFTP daemon processes.

change_config(servers, Options) -> [{Pid, Result}]
Types:

Options = [option()]

Pid = pid()

Result = ok | {error, Reason}

Reason = term()

Changes configuration for all TFTP server processes.

change_config(Pid, Options) -> Result
Types:

Pid = pid()

Options = [option()]

Result = ok | {error, Reason}

Reason = term()

Changes configuration for a TFTP daemon, server, or client process.

info(daemons) -> [{Pid, Options}]
Types:

Pid = [pid()]

Options = [option()]

Reason = term()

Returns information about all TFTP daemon processes.

info(servers) -> [{Pid, Options}]
Types:

Pid = [pid()]

Options = [option()]

Reason = term()

Returns information about all TFTP server processes.

info(Pid) -> {ok, Options} | {error, Reason}
Types:

Options = [option()]

Reason = term()

Returns information about a TFTP daemon, server, or client process.

read_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState}
| {error, Reason}
Types:

RemoteFilename = string()

LocalFilename = binary | string()

6 | Ericsson AB. All Rights Reserved.: TFTP

tftp

Options = [option()]

LastCallbackState = term()

Reason = term()

Reads a (virtual) file RemoteFilename from a TFTP server.

If LocalFilename is the atom binary, tftp_binary is used as callback module. It concatenates all transferred
blocks and returns them as one single binary in LastCallbackState.

If LocalFilename is a string and there are no registered callback modules, tftp_file is used as callback module.
It writes each transferred block to the file named LocalFilename and returns the number of transferred bytes in
LastCallbackState.

If LocalFilename is a string and there are registered callback modules, LocalFilename is tested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

start(Options) -> {ok, Pid} | {error, Reason}
Types:

Options = [option()]

Pid = pid()

Reason = term()

Starts a daemon process listening for UDP packets on a port. When it receives a request for read or write, it spawns
a temporary server process handling the actual transfer of the (virtual) file.

write_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState}
| {error, Reason}
Types:

RemoteFilename = string()

LocalFilename = binary() | string()

Options = [option()]

LastCallbackState = term()

Reason = term()

Writes a (virtual) file RemoteFilename to a TFTP server.

If LocalFilename is a binary, tftp_binary is used as callback module. The binary is transferred block by block
and the number of transferred bytes is returned in LastCallbackState.

If LocalFilename is a string and there are no registered callback modules, tftp_file is used as callback
module. It reads the file named LocalFilename block by block and returns the number of transferred bytes in
LastCallbackState.

If LocalFilename is a string and there are registered callback modules, LocalFilename is tested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

CALLBACK FUNCTIONS
A tftp callback module is to be implemented as a tftp behavior and export the functions listed in the following.

On the server side, the callback interaction starts with a call to open/5 with the registered initial callback state.
open/5 is expected to open the (virtual) file. Then either function read/1 or write/2 is invoked repeatedly, once
per transferred block. At each function call, the state returned from the previous call is obtained. When the last block

Ericsson AB. All Rights Reserved.: TFTP | 7

tftp

is encountered, function read/1 or write/2 is expected to close the (virtual) file and return its last state. Function
abort/3 is only used in error situations. Function prepare/5 is not used on the server side.

On the client side, the callback interaction is the same, but it starts and ends a bit differently. It starts with a call
to prepare/5 with the same arguments as open/5 takes. prepare/5 is expected to validate the TFTP options
suggested by the user and to return the subset of them that it accepts. Then the options are sent to the server, which
performs the same TFTP option negotiation procedure. The options that are accepted by the server are forwarded to
function open/5 on the client side. On the client side, function open/5 must accept all option as-is or reject the
transfer. Then the callback interaction follows the same pattern as described for the server side. When the last block
is encountered in read/1 or write/2, the returned state is forwarded to the user and returned from read_file/3
or write_file/3.

If a callback (performing the file access in the TFTP server) takes too long time (more than the double TFTP time-out),
the server aborts the connection and sends an error reply to the client. This implies that the server releases resources
attached to the connection faster than before. The server simply assumes that the client has given up.

If the TFTP server receives yet another request from the same client (same host and port) while it already has an active
connection to the client, it ignores the new request if the request is equal to the first one (same filename and options).
This implies that the (new) client will be served by the already ongoing connection on the server side. By not setting
up yet another connection, in parallel with the ongoing one, the server consumes less resources.

Exports

Module:abort(Code, Text, State) -> ok
Types:

Code = undef | enoent | eacces | enospc

 | badop | eexist | baduser | badopt

 | int()

Text = string()

State = term()

Invoked when the file transfer is aborted.

The callback function is expected to clean up its used resources after the aborted file transfer, such as closing open
file descriptors and so on. The function is not invoked if any of the other callback functions returns an error, as it is
expected that they already have cleaned up the necessary resources. However, it is invoked if the functions fail (crash).

Module:open(Peer, Access, Filename, Mode, SuggestedOptions, State) -> {ok,
AcceptedOptions, NewState} | {error, {Code, Text}}
Types:

Peer = {PeerType, PeerHost, PeerPort}

PeerType = inet | inet6

PeerHost = ip_address()

PeerPort = integer()

Access = read | write

Filename = string()

Mode = string()

SuggestedOptions = AcceptedOptions = [{Key, Value}]

 Key = Value = string()

State = InitialState | term()

8 | Ericsson AB. All Rights Reserved.: TFTP

tftp

 InitialState = [] | [{root_dir, string()}]

NewState = term()

Code = undef | enoent | eacces | enospc

 | badop | eexist | baduser | badopt

 | int()

Text = string()

Opens a file for read or write access.

On the client side, where the open/5 call has been preceded by a call to prepare/5, all options must be accepted
or rejected.

On the server side, where there is no preceding prepare/5 call, no new options can be added, but those present in
SuggestedOptions can be omitted or replaced with new values in AcceptedOptions.

Module:prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState)
-> {ok, AcceptedOptions, NewState} | {error, {Code, Text}}
Types:

Peer = {PeerType, PeerHost, PeerPort}

PeerType = inet | inet6

PeerHost = ip_address()

PeerPort = integer()

Access = read | write

Filename = string()

Mode = string()

SuggestedOptions = AcceptedOptions = [{Key, Value}]

 Key = Value = string()

InitialState = [] | [{root_dir, string()}]

NewState = term()

Code = undef | enoent | eacces | enospc

 | badop | eexist | baduser | badopt

 | int()

Text = string()

Prepares to open a file on the client side.

No new options can be added, but those present in SuggestedOptions can be omitted or replaced with new values
in AcceptedOptions.

This is followed by a call to open/4 before any read/write access is performed. AcceptedOptions is sent to the
server, which replies with the options that it accepts. These are then forwarded to open/4 as SuggestedOptions.

Module:read(State) -> {more, Bin, NewState} | {last, Bin, FileSize} | {error,
{Code, Text}}
Types:

State = NewState = term()

Bin = binary()

FileSize = int()

Code = undef | enoent | eacces | enospc

Ericsson AB. All Rights Reserved.: TFTP | 9

tftp

 | badop | eexist | baduser | badopt

 | int()

Text = string()

Reads a chunk from the file.

The callback function is expected to close the file when the last file chunk is encountered. When an error is encountered,
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors, and
so on. In both cases there will be no more calls to any of the callback functions.

Module:write(Bin, State) -> {more, NewState} | {last, FileSize} | {error,
{Code, Text}}
Types:

Bin = binary()

State = NewState = term()

FileSize = int()

Code = undef | enoent | eacces | enospc

 | badop | eexist | baduser | badopt

 | int()

Text = string()

Writes a chunk to the file.

The callback function is expected to close the file when the last file chunk is encountered. When an error is encountered,
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors, and
so on. In both cases there will be no more calls to any of the callback functions.

A tftp_logger callback module is to be implemented as a tftp_logger behavior and export the following
functions:

Exports

Logger:error_msg(Format, Data) -> ok | exit(Reason)
Types:

Format = string()

Data = [term()]

Reason = term()

Logs an error message. See error_logger:error_msg/2 for details.

Logger:info_msg(Format, Data) -> ok | exit(Reason)
Types:

Format = string()

Data = [term()]

Reason = term()

Logs an info message. See error_logger:info_msg/2 for details.

Logger:warning_msg(Format, Data) -> ok | exit(Reason)
Types:

Format = string()

10 | Ericsson AB. All Rights Reserved.: TFTP

tftp

Data = [term()]

Reason = term()

Logs a warning message. See error_logger:warning_msg/2 for details.

Ericsson AB. All Rights Reserved.: TFTP | 11

	TFTP
	TFTP User's Guide
	Introduction
	Purpose
	Prerequisites

	Getting Started
	General Information
	Using the TFTP client and server

	Reference Manual
	tftp
	change_config/2
	change_config/2
	change_config/2
	info/1
	info/1
	info/1
	read_file/3
	start/1
	write_file/3
	Module:abort/3
	Module:open/6
	Module:prepare/6
	Module:read/1
	Module:write/2
	Logger:error_msg/2
	Logger:info_msg/2
	Logger:warning_msg/2

